RealContinuedFractions

Documentation for RealContinuedFractions.jl.

Examples

julia> using RealContinuedFractions

julia> fromcontfrac(contfrac(π, 4))
355//113

julia> fromcontfrac(contfrac(big(π), 25))
8958937768937//2851718461558

julia> cf = contfrac(6283//2000)
ContinuedFraction{Vector{Int64}}([3, 7, 14, 1, 8, 2])

julia> fromcontfrac(cf)
6283//2000

julia> fromcontfrac(Float64, cf)
3.1415

julia> convergents(contfrac(π, 5))
5-element Vector{Rational{Int64}}:
      3//1
     22//7
    333//106
    355//113
 103993//33102

Library

Public

RealContinuedFractions.contfracFunction
contfrac(x::Real)
contfrac(x::Real, n::Integer)
contfrac(T::Type, x::Real)
contfrac(T::Type, x::Real, n::Integer)

Compute the first n terms of the continued fraction of x, representing it with type T (defaults to Int).

source
RealContinuedFractions.convergentFunction
convergents(cf::ContinuedFraction)
convergents(T::Type, cf::ContinuedFraction)

Compute the last convergent of the continued fraction.

These are almost equivalent to

fromcontfrac(cf)
fromcontfrac(Rational{T}, cf)

but perform the computation in the opposite order.

Moreover, it does not use the type Rational internally, so it does not check for overflow.

source
RealContinuedFractions.fromcontfracFunction
fromcontfrac(cf::ContinuedFraction)
fromcontfrac(T::Type, cf::ContinuedFraction)

Evaluate the continued fraction cf using the type T (defaults to the rational type associated with eltype(cf)).

source

Private